Vision Based Fire Detection Using Mixture Gaussian Model
نویسندگان
چکیده
Vision based fire detection has many advantages over traditional methods. In vision based fire detection approaches, it is required that systems must have enough robustness and be insensitive to environment. We mainly take advantage of mixture Gaussian model and frame difference techniques to adaptively extract a background image from image sequences captured by ordinary color cameras. These techniques are able to mostly eliminate influences of artificial lights, wind and moving objects disturbance. By subtracting the background image from the incoming frame, foreground objects which are possible fire pixels are thus obtained. After analyzing behavior and spectroscopy of fire, color, shape fluctuation and growth rate are used to determine if a possible pixel is an actual fire pixel. Experiments show that our algorithm is robust for a stationary camera.
منابع مشابه
SVM based forest fire detection using static and dynamic features
A novel approach is proposed in this paper for automatic forest fire detection from video. Based on 3D point cloud of the collected sample fire pixels, Gaussian mixture model is built and helps segment some possible flame regions in single image. Then the new specific flame pattern is defined for forest, and three types of fire colors are labeled accordingly. With 11 static features including c...
متن کاملAn Intelligent Automatic Early Detection System of Forest Fire Smoke Signatures using Gaussian Mixture Model
The most important things for a forest fire detection system are the exact extraction of the smoke from image and being able to clearly distinguish the smoke from those with similar qualities, such as clouds and fog. This research presents an intelligent forest fire detection algorithm via image processing by using the Gaussian Mixture model (GMM), which can be applied to detect smoke at the ea...
متن کاملNegative Selection Based Data Classification with Flexible Boundaries
One of the most important artificial immune algorithms is negative selection algorithm, which is an anomaly detection and pattern recognition technique; however, recent research has shown the successful application of this algorithm in data classification. Most of the negative selection methods consider deterministic boundaries to distinguish between self and non-self-spaces. In this paper, two...
متن کاملSpeech Enhancement using Laplacian Mixture Model under Signal Presence Uncertainty
In this paper an estimator for speech enhancement based on Laplacian Mixture Model has been proposed. The proposed method, estimates the complex DFT coefficients of clean speech from noisy speech using the MMSE estimator, when the clean speech DFT coefficients are supposed mixture of Laplacians and the DFT coefficients of noise are assumed zero-mean Gaussian distribution. Furthermore, the MMS...
متن کاملA Gaussian Mixture Model Based System for Detection of Macula in Fundus Images
Digital fundus imaging is used to diagnose various eye diseases like diabetic retinopathy, diabetic maculopathy and age related macular degeneration. Macula is the main central part of retina which is responsible for sharp vision and any changes in macula cause severe effects on vision. In this paper, we propose a novel method for automated detection of macula from digital fundus images. The pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005